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The question of open boundary conditions of inflow and outflow type for the Navier-Stokes 
equations and its influence on the convergence to steady state is addressed. Both the con- 
tinuous and semi-discrete problem are analysed using the energy method and the Laplace 
transform technique. The energy method is used to derive well-posed boundary conditions for 
the continuous problem. For the semi-discrete problem we use the energy method to prove 
that by using the well-posed boundary conditions for the continuous problem and adding a 
suitable numerical boundary condition well-posedness is preserved. By employing the Laplace 
transform technique the spectra for different types of boundary conditions are obtained. The 
spectra are analysed and it is shown how the choice of boundary conditions strongly affects 
the convergence to steady state. One-dimensional Navier-Stokes calculations are performed 
and the resulting convergence rates agree well with the theoretical analysis. Finally, the spec- 
tra obtained using inflow and outflow types of boundary conditions are compared with spectra 
obtained using periodic boundary conditions and the choice of a time-integration method for 
the Navier-Stokes equations is discussed. 8 1989 Academic Press. Inc 

1. INTRODUCTION 

A significant problem in computational fluid dynamics is how to choose bound- 
ary conditions for the Navier-Stokes equations at inflow and outflow boundaries. 
The most frequently used method is to use the open boundary conditions given by 
the Euler equations and add numerical boundary conditions of the extrapolation 
type, see for example [ 11. This approach has both theoretical and practical dis- 
advantages. Theoretically it means that there is not a clear separation between the 
boundary conditions required by the equations and the additional conditions. In 
practice it means that the choice of additional boundary conditions are made on a 
cut and trial basis. 

Several authors have studied the problem, Gustafsson and Sundstrom [2], 
Oliger and Sundstrom [3], and Nordstrom [4] all used the energy method to show 
well-posedness of the linearised Navier-Stokes equations with constant coefficients. 
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The boundary conditions were chosen so that a basic energy estimate of the 
dissipative type was obtained. The dissipative type of boundary conditions derived 
using the energy method on the linearised problem guarantees convergence if one 
is sufficiently close to steady state. Dutt [S] considered the full nonlinear 
Navier-Stokes equations. An entropy function was used to define a norm and the 
energy method was used to prove boundedness of the solution. Unfortunately this 
approach of studying the nonlinear problem does not give any information about 
well-posedness, nor does it say anything about convergence to steady state. In this 
paper we will use the energy method on the continuous and semi-discrete constant 
coefficient problem to obtain criteria for well-posedness. We will also present 
dissipative energy estimates and boundary conditions leading to well-posedness for 
both the continuous and semi-discrete problem. 

The energy method gives a sufficient condition for well-posedness, however, it 
does not provide a necessary condition. A serious limitation with the energy 
method is that only boundary conditions involving zero and first-order gradients 
can be analysed ; another limitation is that no quantitative information regarding 
convergence rates for different boundary conditions and discretisation methods can 
be obtained. Recently, Engquist and Gustafsson [6] studied the influence of 
difference formulas and boundary conditions on the convergence rate of the Euler 
equations using the Laplace transform technique. Kreiss [7] used this technique to 
prove well-posedness for hyperbolic systems. The same technique will be used 
in this paper to study the influence of different boundary conditions on the 
convergence to steady state of the Navier-Stokes equations. 

The remainder of this paper will proceed as follows. In Section 2 we discuss the 
relation between nonlinear, linear, and constant coefficient problems. We also relate 
the analysis of the homogeneous problem to the inhomogeneous one. In Section 3 
we present the specific constant coefficient problem with homogeneous boundary 
conditions that we will analyse in the remainder of the paper. In Section 4 we use 
the energy method on the continuous problem to derive sufficient conditions for 
well-posedness, a dissipative energy estimate, and boundary conditions leading to 
well-posedness. In Section 5 we show how to compute the continuous and discrete 
spectrum of the problem and how one obtains the rate of convergence. One-dimen- 
sional Navier-Stokes computations are performed in Section 6 and the convergence 
rates obtained are compared with the results from the theoretical analysis. We 
proceed in Section 7 by investigating the problem with numerical boundary condi- 
tions. By using the energy method on the semi-discrete problem we derive sufficient 
conditions for well-posedness and obtain a discrete energy estimate which 
correspond to the continuous one obtained in Section 4. We also present one set of 
discrete boundary conditions leading to well-posedness. We discuss the choice of 
numerical time integration methods in Section 8. Finally, in Section 9 we sum up 
and draw conclusions. 

581/85/l-14 
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2. THE INITIAL BOUNDARY VALUE PROBLEM 

Since we will analyse the Navier-Stokes equations with constant coefficients and 
homogeneous boundary conditions we need some basic theoretical concepts to 
relate that problem to the full nonlinear one. We restrict ourselves to the theory 
relevant for the the Navier-Stokes equations. For a more detailed discussion on 
these matters we refer to Kreiss and Lorenz [S] in which most of the material in 
this section can be found. At first we disregard the problem with boundary condi- 
tions and consider the nonlinear Cauchy problem for systems of quasi-linear partial 
differential equations 

24, = P(x, t, z4, a/ax)u +.F(x, t), XE R”, 06t6T (1) 

with initial condition 

4x9 0) =f(x), XER~. (2) 

The initial function f and the forcing function F are the data of the problem, the 
differential operator P is assumed given. Naturally one would like problem (l), (2) 
to have a unique solution. Furthermore, one would like the solution to depend 
smoothly on the data; in other words if small perturbations are added to the data, 
the deviation from the unperturbed problem should be small. This leads to the 
concept of well-posedness. Roughly speaking, a problem is well posed if it has a 
unique solution and in every finite time interval it can be estimated in terms of the 
data. To make the concept more precise we consider the perturbed problem 

II,= P(x, t, u, iJ/dx)u + F(x, t) + hF(x, t), xeRS, O<t<T (3) 

with initial condition 

4% 0) = f(x) + 6fb), XE R”. (4) 

The following definition of well-posedness is appropriate for our purpose. 

DEFINITION 1. If the problem (l), (2) has a unique solution u for F, f then the 
nonlinear problem (l), (2) is well posed at u if there is an E > 0 so that for all 
smooth functions 6F, Sf with 

the perturbed problem (3), (4) is uniquely solvable and 6~ = u - u satisfies 

II6ull d KT{ lla”ll + II~FII 1. (6) 

K, may depend on T but not on 6F, @I 
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Other definitions of well-posedness are possible, different norms can be used, and 
the functional form,of the growth rate K,(T) can vary. Here one might add that 
if one wants to compute a steady state solution (which is our main interest), K, has 
to decrease with time. 

Obviously the definition of well-posedness for the nonlinear problem is closely 
related to well-posedness of the linearised problem. Roughly speaking the following 
linearisation principle holds: A nonlinear problem is well posed at u if the linear 
problems obtained by linearizing at all functions near u are well posed. Thus we have 
related well-posedness of the nonlinear problem to well-posedness of a set of 
linearised problems. It is desirable to relate linear problems to constant coefficient 
problems. This can be done using the following localisation principle: Zf all constant 
coefficient problems are well posed and the solution can be estimated in terms of the 
initial function itself (no gradients of the initial function are allowed in the estimate) 
then the corresponding variable coefficient problem is also well posed. It should be 
observed that the localisation principle is not valid for general linear variable 
coefficient operators, but fortunately it is valid for those operators that appear in 
the context of the Navier-Stokes equations, namely: hyperbolic, parabolic, and 
operators of mixed hyperbolic-parabolic type. For proofs and more details concerning 
these principles see Kreiss and Lorenz [S]. 

Now we will relate the homogeneous initial boundary value problem to the 
inhomogeneous one. Consider a linear system of differential equations, 

24, = P(x, t, a/ax)u + F(x, t), XEQ, tgo (7) 

4x, O)=f(x) x E f-2 (8) 

Lu= g(x, t) xEasz. (9) 

L is a linear operator combining values of u and its gradients on the boundary 
r= X?. We consider F,f, and g as the data of the problem. The operators P, L and 
the domain B are fixed. We now define well-posedness for the problem (7) (8), 
and (9). 

DEFINITION 2. The initial boundary value problem (7), (8), (9) is well-posed if 
for all smooth compatible data F, f, g there is a unique solution u, and for every 
finite time interval 0 < t < T there is a constant K, such that 

The constant K, does not depend on F, f, or g but may depend on T. 

Naturally it would be nice if it was sufficient to analyse the problem with zero 
data. Using Duhamel’s principle (see [S]) one can show that the forcing function 
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F is of no importance for well-posedness; in other words if the problem is well 
posed for F = 0 it is also well posed for F # 0 and one just adds 

s ’ IIF(., 5)11’& 
0 

(11) 

to the right-hand side of the estimate. Let us see what the effect of homogeneous 
initial conditions has on the estimate (10). By introducing the variable 
4x, t) = u(x, 1) - exp( - t) f( x ) , we obtain zero initial data for u. The corresponding 
differential equation becomes 

u,=Pu+F+exp(-t){f+Pf}. (12) 

Therefore using (10) we can estimate u in terms of the new forcing function 
G = F+ exp( - t){f+ Pf}. The resulting estimate for u is the same as (10) with F 
replaced by G. Unfortunately, it involves gradients off and is therefore not of the 
same type. If Pf is singular at t = 0, we might have problems. Now what about 
homogeneous boundary conditions ? We make the transformation u(x, t) = 
u(x, t)-&x)g(t), where $ is chosen so that u has zero boundary data. Further- 
more, we choose 4 to be a smooth function that decays to zero away from the 
boundary r. The differential equation for u becomes 

u, = Pu + F+ gP4 -#g!. (13) 

By once more using (10) we can estimate u and therefore also u. The forcing func- 
tion in this case is F+ gP4 - 4ggl. This time we get an additional term involving 
time derivatives of g on the right-hand side of (10). 

3. THE NAVIER-STOKES EQUATIONS 

We consider the linearised and symmetrised Navier-Stokes equations in two 
space dimensions with initial conditions and homogeneous boundary conditions : 

qt + 4x + Bq, + E {‘2x.x + Eq, + Dq, > = 0, (x, y)eQ, tao 

4(x, Y, 0) -fb, Y) = 0, (4 Y)EQ 

Aoq(O, Y, t) + Boq,(O, Y, t) + Coq,,(O, Y, t) = 0 
(14) 

A,dL Y, t)+B,q,(L Y, t)+C,q,,(L Y, t)=O 

The Navier-Stokes equations are linearised around a constant state & = (& U, 6, T)’ 
and symmetrised using the “parabolic” symmetriser derived by Abarbanel and 
Gottlieb [9], see also Nordstrom [lo]. The perturbation q is defined by q = AQ, 
where A = diag(c/lp, &, ,,$, 7,/m/C). A, B, C, D, and E are four by four 
constant symmetric matrices listed in the Appendix. The domain Q is the strip 
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(&Y)ECOIllXC- co, +co]. The matrices A,, B,, Co, Ai, B,, and C, express 
boundary conditions on the inflow and outflow boundaries and will be specified 
later. We include second-order derivatives in the boundary conditions for reasons 
that will become obvious later when we compare the discrete spectrum with the 
continuous one. 

The dependent variables and parameters p, U, v, T, p, c, M, p, 1, k, Pr, y, Re, and 
E are respectively the density, x and y components of the velocity, the temperature, 
the pressure, the speed of sound, the Mach number, the shear and second viscosity, 
the coefficient of heat conduction, the Prandtl number, the ratio of specific heats, 
the Reynolds number, and the inverse Reynolds number. All variables are non- 
dimensionalised with reference quantities. We use an overbar to denote a variable 
with a constant state unless it is obvious. In most of this investigation we consider 
a uniform flow and we use the following numerical values on the variables unless 
otherwise stated. 

p=1, U=l v= 0, T= l/(y(y - 1) M*), c= l/M 

,ii=l, A= -213, R=l, Pr=0.7, y = 1.4. 
(15) 

In the y-direction we have no boundaries and therefore we Fourier-transform (14) 
with respect to that variable: 

$4, + U’O’cj + u’1’q5, + u(2)$bxx = 0, XE [O, 11, t>O 

$(A w, 0) -3(x, w) = 0, XE co, 11 
AoN WY t) + Bo#,(O, w, f) + cod*x(o, 0, f) = 0, 

(16) 

~,~(l,~,~)+B,~,(l,~,t)+C,~,,(1,~,t)=O. 

The Fourier transformed variable q is denoted by 4; this notation will be kept for 
the rest of the paper. The matrices U (‘) U(l), and U(‘) are functions of the Mach , 
number, the Reynolds number, and the wave number w in the y direction: 

u(O) = ioB(M) + (iW)*&D 

U(‘)=A(M) + h&E (17) 
(y(2) = &C. 

Later on we will use the Laplace transform to compute the spectrum of the 
problem. The Laplace transformed version of (16) is 

(U(O) + sZ)cp + u”‘Cp, -t u’2’qJ, =3(x, w), XE co, 11 
Aocpvk 0, s)+ Bocp,(O, w, s) + Cocp,,(O, (-3 s)= 0 (18) 
A,rp(L 0, s)+B,cp,(L 0, s)+ C,cp,,(L a, s)=O. 

The Laplace and Fourier transformed vector q is denoted by cp, this notation will 
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be kept for the rest of the paper. The Laplace transformation will formally be 
justified in Section 4 below. For later reference we also introduce the inner product 
and norms for the continuous problem: 

l14112=j+m IMII’d~= j’” j’4*vw --m -m 0 

4*4= i iidi. 
,=l 

(19) 

In (19) the overbar denotes a complex conjugated quantity. 

4. THE ENERGY METHOD 

To derive boundary conditions we use the energy method. We state the basic 
result from which the boundary conditions are derived. 

THEOREM 1. If the boundary conditions in (14) are such that the conditions 

[qTAq+2qTCq,l,=oa 
[qTAq + 2&qTCq,], = 1 z 0 

(20) 

are satisfied, then the problem is well posed and q satisfies the estimate 

Ilqll*+~~ j; {Ils:‘ll’+ 11~1”11*~ dT4fll’. (21) 

We have used the notation qc2) = (q2, q3, q4)T and c1 is a positive constant of order 
one. 

It should be mentioned here that the estimate (21) can be sharpened even more 
by including the time integral of jq12 at the boundaries on the left-hand side of the 
inequality. 

Proof. Using Eq. (16), multiplying with the complex conjugated transpose of 4, 
and integrating with respect to x we obtain 

dx = -[#*Ad + &(d*C#x + @C&l;, (22) 

where 

(23) 
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The matrix Y is Hermitian and has nonpositive eigenvalues; the eigenvalues are 

&,4 = -WWr)l~ 
A,,, = -&i/P f (1 +$/ii 
&= -2(X+2p)/p+(X+j)/p. 

(24) 

By using Parseval’s relation on (22), condition (20), and an estimate of the matrix 
Y, we get 

~l14112~r+~~~Il~~~l12+ Ils;~‘ll’~~0~ (25) 

The estimate (21) is obtained by integration. Uniqueness follows directly from the 
energy estimate (21). Assume that we have another solution 4 satisfying the same 
equation with the same initial and boundary conditions, then, since the problem is 
linear, l= q - 4 is also a solution but with zero initial condition. Using Eq. (21) we 
get r = 0. We will now proceed to show estimates for all higher x-derivatives of 4. 
By differentiating (16) we see that 4, satisfies the same differential equation as 4 
with the same boundary conditions. This implies 

ll4,ll d Ild,(O)ll = lWCOY+ PL + ~~‘!Lxll. (26) 

We get the estimate 

llq5,ll =const i Ild”j?ldx”ll 
i 

. 
iI=0 I 

(27) 

To show estimates for the x-derivatives we partition 4 and the matrices iY”), U(I), 
and UC*) into blocks. The partitioned form of (16) is 

(+q” = -uio,‘p- qo,‘p’_ u$jy _ u’,;‘@’ (28) 
&” = -u:o,‘(p _ ugp _ uy&y _ #&q’ _ j-J:‘,‘(pW. (29) 

Since UC,:) = ii is nonsingular we can express d1;” in terms of ~5, dr, and 4:) by using 
the first equation. The second equation gives us 

. (30) 

Now we have estimates for 4, d,, #,, and 4::,‘,‘, repeated differentiation and applica- 
tion of the same technique will give us estimates of all x-derivatives as long as the 
initial data can be differentiated. By using Parseval’s theorem we get the corre- 
sponding estimates for the untransformed variables. By using the Sobolev inequality 

(31) 
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we can bound all x-derivatives in the maximum norm. To conclude the proof of the 
theorem we must show existence. This can be done using the Laplace transform 
technique. The Laplace transformation is justified since all gradients of q are 
bounded and we can formally obtain a solution in the way that will be described 
in Section 5 below. This concludes the proof. 

As can be seen in (20) the wave number o does not influence well-posedness ; 
what about the influence of w on the total dissipation? In Fig. 1 the decay rates 
(a measure of the total dissipation, see Section 5) for a set of boundary conditions 
(denoted below by B.C.1 ) giving a well-posed problem are plotted for three different 
Reynolds numbers. One clearly see that the total dissipation has a minimum for 
o # 0 and consequently the least dissipative case is not l-dimensional. 

To derive explicit boundary conditions we will use condition (20). The quadratic 
form in (20) can be written 

qT‘4q + 2&qTQy = + ((U - C) c2/2$} [p - pcu 12 

+ {iz’/y(y- 1) p2}[p-pc212 

+ bwl’ 
+ {(u+c)c2/2yp2}[p+pcu]2 

- wdc(~ + 24 ~4 + w, + bw mm. (32) 

At x = 0 we have inflow and at x = 1 we have outflow (the velocity U is always 

2 

-6 

3 Re = O.lOOE+02 
3 Re = O.lOOE+03 
h Re = O.lOOE+04 

10 20 30 40 50 
0 

FIG. 1. Decay rates for B.C.l, Ma=0.5 
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positive). When constructing boundary conditions for the Navier-Stokes equations 
it is suitable to choose boundary conditions so that the Euler equations are well 
posed and then augment these using the right number of derivative boundary 
conditions so that the gradient terms within the brackets of (32) have the right sign. 
Since we derive boundary conditions for the linearised problem, the boundary 
conditions for the nonlinear problem are obtained by integrating the homogeneous 
boundary conditions for the linearised problem. To get useful boundary conditions 
for the full nonlinear problem we therefore demand that the boundary conditions 
for the linear problem form total differentials. 

The number of boundary conditions for the Navier-Stokes equations is obtained 
by considering the mathematical structure of the equations. It consists of a hyper- 
bolic scalar equation (the continuity equation) and a parabolic set of equations (in 
two dimensions we have two momentum equations and one energy equation). For 
the parabolic part of the equations we have to pose three boundary conditions at 
any type of boundary. In the hyperbolic case we have to specify one boundary 
condition if the characteristic variable p propagates into the domain otherwise not. 
For the Navier-Stokes equations in two dimensions this means that we have to give 
four boundary conditions at an inflow boundary and three at an outflow boundary. 
For more details on how to determine the number of boundary conditions see 
Strikwerda [ 111. 

Supersonic inflow, x=0, ii> C. We should give four boundary conditions both 
for the Euler and Navier-Stokes equations. The coefficients in front of the squared 
brackets in (32) are all positive which means we have to set all variables to zero: 

p = 0, u = 0, v = 0, T=O. (33) 

Subsonic inflow, x = 0, U < C. Three boundary conditions should be given for the 
Euler equations and four for the Navier-Stokes equations. Three of the coefficients 
multiplying the squared brackets are positive, the fourth boundary condition is 
used to make the gradient terms zero: 

24+2c(y-1))‘=o, TT-‘-(y-l)pp-‘=O 

v = 0, (A + 2~) u, - 2(k/Pr) c, = 0. (34) 

Supersonic outji’ow. x = 1, U > C. Three boundary conditions should be given for 
the Navier-Stokes equations and none for the Euler equations. None of the coef- 
ficients are positive; the three boundary conditions are all used to set the gradient 
terms to zero: 

u,r = 0, v, = 0, TX = 0. (35) 

Subsonic outflow, x = 1, ii < C. One boundary condition should be applied for 
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the Euler equations and three for the Navier-Stokes equations. One coefficient is 
positive, the two additional conditions are used to set the gradient terms to zero: 

1; or P--s(A+2~)U,=O, 0.x = 0, T,=O. (36) 

We can summarise the results in the following theorem. 

THEOREM 2. Zf the boundary conditions in (14) are given by (33) at a supersonic 
inflow boundary, (34) at a subsonic injlow boundary, (35) at a supersonic injlow 
boundary, and (36) at a subsonic outflow boundary then the problem is well posed and 
the solution q satisfies the estimate (21). 

The boundary conditions (33), (34), (35), and (36) were obtained by Gustafsson 
and Sundstrom [2] while the subsonic outflow boundary condition p - &(A. + 2~) u, 
= 0 was obtained by Nordstrom [4]. The characteristic boundary conditions used 
for the Eular equations are obtained from (32) by setting the terms within the 
squared brackets to zero when the sign of the corresponding coefficient so indicates 
and ignore the gradient terms. 

5. THE SPECTRUM 

The Laplace transform is defined by 

I 

cc 

z?(s) = Lu = u exp( - st) dt. 
0 

(37) 

The transformation (37) can be done if s(s) is large enough and u has at most 
exponential growth (‘%(s) denotes the real part of s). Formally the transformation 
of (16) was justified in Section 4 above where it was shown that we can estimate 
all x-derivatives of 4. By applying the Laplace transform to (16) we got (18) which 
is a system of ordinary differetial equations with constant coefficients. We assume 
an exponential behaviour of the homogeneous part of the solution. By inserting 
cp = $ exp(rcx) into (18) we obtain 

{u"'K2+ u(')K + (u'"'+S~)}$ =o. (38) 

Equation (38) has a non-trivial solution if and only if: 

Iu(2)K2 + u(l)K+ (u'"'+S~)( =o. (39) 

From Eq. (38) and (39) we can solve for K and Ic/ as functions of s. The 
homogeneous solution can formally be written: 

(Ph= 1 ~,#'(s)exP(Ki(s)x). 
i= 1 

(40) 
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The form (40) of the solution is not valid for multiple eigenvalues rc(s). In that case 
we would assume that the eigenvector 1+5 is an nth degree polynomial in x where 
n + 1 is the multiplicity of the eigenvalue k(s). We do not consider this case 
theoretically but in the computations discussed below it is always checked that no 
multiple eigenvalues are present. The particular solution ‘pP which depends on the 
initial function f is (as will become obvious later) of no interest to us; we simply 
assume that it is known. The coefficients in (40) are determined by the boundary 
conditions which give us the following equation for (T = (cl, cr2, . . . . c,)~. 

E(s)o= -H. (41) 

E(s) is a seven by seven matrix (four inflow conditions and three outflow 
conditions). H depends on the particular solution and its derivatives on the 
boundaries. To get a unique solution of (41) we must choose s so that 
‘S(s) > %(s*), where 

‘iR(s*) = max q(s) VSE {s; IE(s)l =o>. (42) 
s 

If s(s) > %(s*) we can solve for cr and finally get the solution by taking the inverse 
Laplace transform to get 4: 

4 = L-‘cp =exp(%(s*)t) & ITi” cp(s + ‘%(s*)) exp(st) d$}. 
*cc 

For convergence to steady state it is essential that ‘%(s*) is strictly less than zero; 
otherwise the solution grows exponentially with time. For obvious reasons we 
hereafter denote %(s*) with the decay rate (D.R.(C)) of the continuous problem. 
The distribution of singular values of cp, the continuous spectrum, is given by 
solving 

P(s)1 = 0 (44) 

for s. Due to the complexity of Eqs. (38), (39), and (44) we have to use numerical 
methods to obtain the continuous spectrum. First the determinant in (39) is 
expanded into a seventh degree polynomial in rc and a standard library routine is 
used to compute K~(s) for i= 1,2, . . . . 7. Second, the corresponding eigenvectors 
tii(lci(s), s) are computed using (38). Now we have the eigenvectors tji and the 
eigenvectors $i(~i(s), s) are computed using (38). Now we have the eigenvectors lcli 
and the eigenvalues rci as functions of s and with given boundary conditions we can 
construct the matrix E(s) and therefore also [E(s)/. Equation (44) is solved using 
the secant method. 

Now we turn to the semi-discrete problem. We discretised the problem (16) by 
using the centered finite volume method: 
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(di)rcAfdi--l +AM#i+Afdi+I, i = 1, 2, *.., N 

ii(O) =fi i= 0, 1, . ..) N+ 1 

40 = Bob + co42 
(45) 

4 N+,=BNdN+C,vdN--L. 

The function values #i = d( (xi + xi + ,)/2, CO, t) are located in the middle of the cell 
and the value of ~+3 at a cell boundary xi is given by (di + #i- ,)/2. The gridpoints 
x0 and xN+ 1 are located just outside of the boundaries. The matrices involved are 
functions of dxi = x, + , - xi: 

AL= +U”)(~)-2a”)((~xi~I:dx,)dx,) 
AM= -@O’+ u(2) 2 2 I (Axj - I+ AXi) AX;+ (AX{+ I+ AXj) AXj 

(46) 

For the boundary points we get the equations 

where 

(41L=A;“9h +‘4;v2 

(dN)t = Ah”dN + AlhrL4N- 1, 

Ai”=Ay+AfBo, A;R=Af+AfCo 

Ak”= A:+ A;B,, A:=Af;+A;C,. 

where 

A= 
. . ‘., ‘.. 

We can now write the system (45) in a more compact form, 

6 

(47) 

(48) 

(49) 

(50) 

(51) 
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Now we Laplace-transform Eq. (49) and obtain 

(A-sZ)cp= -f. (52) 

Similarly to the continuous problem we must choose s so that s(s) > %(s*), where 
s* is the eigenvalue of A with the largest real part. If ‘%(s) > %(s*) we can solve for 
cp in (52) and finally find the solution by taking the inverse Laplace transform to 
obtain $: 

$ = Lp+p = exp(%(s*)t) 
{ 

&. S+‘m cp(s + ‘%(s*)) exp(st) &}. (53) IO2 

Just as in the continuous case, it is essential for convergence to steady state that 
‘%(s*), the discrete decay rate (D.R.(D)), is strictly less than zero. The distribution 
of singular values of cp, the discrete spectrum, is given by solving 

IA-sZ/ =0 (54) 

for s. 
To verify the codes we shall compare the continuous and discrete spectra, but 

first we have some comments on how to simulate numerical boundary conditions 
in the continuous case. Consider for simplicity a uniform mesh; assume that 
h(x-dx) and h(x) are known. If we use zero or first-order extrapolation to obtain 
h(x + dx), it corresponds to setting the first or second derivative to zero, since 

h(x), = {h(x + Ax) - h(x)}/dx + O(dx) 

h(x),, = {h(x + Ax) - 2/?(x) + h(x - dX)}/2/4X + O(Ax2). 
(55) 

We will investigate three types of continuous boundary conditions and restrict 
ourselves to subsonic flow. 

B.C.1,4. These boundary conditions are derived using the energy method. 
One can choose to extrapolate p or u to get the numerical boundary condition 
(denoted by **). If p is chosen, the discrete boundary condition is denoted B.C.1; 
if we extrapolate U, we denote that B.C.4: 

Inflow boundary Outflow boundary 

u+2c/(y- l)=O 

r/T-+1I)p/p=o 

v=o 
(n+2~)u,-(2(k/Pr)c,=O 

p-&(A+2p)u,=O 

v,=o 

TX=0 

p,, or 4, =o ** 

(56) 

B.C.2. It is common in Euler calculations to specify p, U, and u at the inflow 
boundary and p at the outflow boundary; the numerical boundary conditions are 
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found by extrapolation. In Navier-Stokes calculation this procedure is also often 
used. As we have seen, one should give four inflow conditions and three outflow 
conditions for the coptinuous Navier-Stokes equations. For the sake of comparison 
we therefore have to simulate one inflow condition and two outflow conditions. We 
simulate zero and first-order extrapolation by setting the first and second derivative 
to zero, respectively, see (55). The simulated continuous boundary conditions are 
denoted by *, while as was mentioned above ** is used to indicate a numerical 
boundary condition : 

Inflow boundary Outflow boundary 

p=o 
u=o 
u=o 

T,=O * 

p=o 
u,,=o * 
u,,=o * 

Pm;= ** 0 

(57) 

B.C.3. Another common set of boundary conditions for the Euler equations 
is found by specifying the ingoing characteristics and extrapolating the outgoing 
ones. The same procedure is common in Navier-Stokes computations. The 
notations are the same as discussed above: 

Inflow boundary Outflow boundary 

(p-p&),,=0 * 

p-p?=0 
u=o 

p+pcu=o 

p-~Cu=O 
(p-pc2)x,=o * 

u,,=o * 
(p+/m),,=O ** 

(58) 

Now we will compare the continuous spectrum with the discrete one. The 
continuous spectrum has an infinite number of eigenvalues s while the discrete 
spectrum has 4N eigenvalues, since q has four components and N is the number of 
gridpoints. For fixed values of the parameters involved we should expect con- 
vergence of the discrete spectrum to the continuous one for N + co. Furthermore, 
with a given number of gridpoints we can only expect to resolve the eigenvalues 
corresponding to the smoothest eigensolutions and, consequently, parts of the 
discrete spectrum will have no similarity with the continuous spectrum. It is, 
however, essential that the eigenvalue located to the utmost right in the complex 
plane is well predicted since that eigenvalue determines the decay rate. 

Before discussing the results from the computations we give some remarks about 
the parameters involved. The notation dxmi, in the figures means the smallest grid- 
size in the problem. As was mentioned above the notation D.R.(C) refers to the real 
part of the s-value located to the utmost right in the complex plane. The letter C 
refers to the continuous problem while D refers to the discrete problem. Ma is the 
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the decay rate. By using the spectra one can compute a theoretical decay of the 
disturbance using the fourth-order Runge-Kutta amplification factor : 

In (60) s* is the s value with the real part equal to the decay rate and n is the 
number of iterations. The solution should grow or decay with that rate. The use of 
(60) is indicated in the figures by a straight line. The time step At is chosen to be 
constant and adjusted so that the CFL condition for the fourth-order Runge-Kutta 
method is satisfied: 

44m,,~CFL,.,, CFL,,, = 2.828, CFL,,, = 2.875. (61) 

By CFL,,, and CFL,,, we denote the CFL numbers for a purely imaginary and 
purely real spectrum, respectively. Normally the time step was limited due to the 
elongation of the spectrum along the negative real axis, the time step was calculated 
using CFL(,, and then reduced by approximately 30%. The reduction was made in 
order to avoid the eigenvalue located to the utmost left in the complex plane having 
the least damping. For each computation it was checked that the least damping was 
obtained using s*. 

In Fig. 4 we have the convergence history for a uniform mesh at Re = 10. All the 
boundary conditions except no : 4 converge, which is in agreement with the information 
from the spectra where all eigenvalues are located in the left complex plane except 
for B.C.4 where s = 0 is included in the spectrum. In Fig. 5 we have the convergence 
history for Re = 100 and a Tchebycheff mesh. B.C.1 converge according to theory 
after approximately 7000 iterations. B.C.2 has a decay rate close to zero which gives 
extremely slow convergence. As usual, B.C.4 does not converge. The spectrum 
corresponding to B.C.3 has eigenvalues in the right halfplane, see Fig. 6, which 
theoretically means that the solution should grow without bound. Another com- 
putation using a much lower initial disturbance was made, see Fig. 7. By comparing 
Figs. 5 and 7 one realises that nonlinear effects are the reason that B.C.3 does not 
grow without bound. The predicted growth rate is quite accurate. In Fig. 8 we have 
the convergence history for Re = 1000 and a Tchebycheff mesh. The theoretical 
decay rate agrees well with the results of the computations for B.C.1 and B.C.3. For 
B.C.4 we have no convergence as usual and the convergence rate for B.C.2 is small, 
all in agreement with the theoretical analysis. 

The results from the computations agree well with the theoretical analysis. They 
indicate that B.C.1 give fast convergence for all cases. B.C.2 converges always, but 
very slowly. B.C.3 give fast convergence if the mesh is coarse relative to the 
Reynolds number, and we have no convergence at all if the mesh is sufficiently line. 
B.C.4 give no convergence at. all due to the zero eigenvalue. 

581/85/l-15 
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7. NUMERICAL BOUNDARY CONDITIONS 

As we have seen in the previous section the choice of numerical boundary condi- 
tions makes a great difference. By choosing to extrapolate u instead of p we did not 
get any convergence. The numerical calculations of the spectrum gave us the eigen- 
value s = 0. It is important not to use boundary conditions where s = 0 is included 
in the spectrum for two reasons. First, as we have seen above, we do not get any 
convergence to steady state for the time-dependent problem. Second, consider the 
steady Navier-Stokes equations (corresponds to setting s = 0 in (18)). If we apply 
boundary conditions so that the time-dependent problem has a spectrum including 
s = 0 then the steady problem has nonunique solutions. This can be realised by 
setting the initial condition f to zero, which means that H in (41) is also zero. If 
IE(O)l = 0 we get an arbitrary solution, since the coefficients B are not necessarily 
zero. The eigenvector corresponding to s = 0 (see Fig. 9) has the form 

4i = (Pi, 0, 0, OIT. (62) 

By setting (di)!=O in (45) and assuming the form (62) of the eigenvector, we 
obtain 

pi = 6, + (Tz( - 1 )j. (63) 
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FIG. 9. The least stable eigenfunctions for B.C.4, Re = 10, uniform mesh. 

The inflow and outflow conditions reduce to 

(64) 

Thus the eigenvector corresponding to s = 0 involves an undetermined constant, 

fj; = (o*( - 1 )‘, 0, 0, O)? (65) 

Since all the other eigenvalues are located in the left half of the complex plane the 
corresponding eigenvectors should have disappeared after a sufficiently long time 
(sufficiently many iterations) and the whole error should be of the form (65). To 
investigate whether this was true or not for the full nonlinear problem another com- 
putation (Re = 10, uniform mesh) using a constant initial conditionf= 0.1 x q was 
made. The error after 10,000 iterations for B.C.4 can be seen in Fig. 10. The error 
in U, v, and T are small while the error in p is several orders of magnitude larger 
and, furthermore, it has exactly the oscillating form (65) derived above. 

If p was extrapolated we obtained convergence for all the cases investigated. 
Furthermore, we have proved that the continuous boundary condition gives a well- 
posed problem. This encourages us to try and prove well-posedness also for the 
semi-discrete problem. We will restrict ourselves to the case with a uniform mesh, 
the extension to a nonuniform mesh is straightforward. 
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FIG. 10. The error after 10000 iterations for B.C.4, Re = 10, uniform mesh. 

By using the finite volume method on a uniform mesh we get the semi-discrete 
correspondence to (14), 

(Silt + ADOqi + B(qy)z + 

E{CD+D-qi+EDo(q.~)i+D(qyy)i}=O, i= 1, 2, . ..) N, t >o 

4i(YY 0)=.6(v), i=o, 1,2, . ..) Nf 1 (66) 

40=4341+Gq2 

where xi = i Ax and Ax = l/N. The forward, backward, and central difference 
operators are given by 

D+qi=(qi+~-qi)/AX, D-qi=(qi-qi-I)/AX, Doqi=(qi+,-qi-1)/2Ax. (67) 

We will also use a special type of norm, 

i=2 

N-1 

qTA,q, AX+ C 
i=2 

(68) 

dY, 
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where A, =diag(b,, 1, 1, 1) and A,=diag(b N, 1, 1, 1). The parameters 6, and 6, 
are positive and will be specified later. Furthermore, we will need the two matrices 
x(l) and x (N) defined by 

~‘1~‘=(1/2){B$4A, +A&?,} 

+(&/dX){-eB~CB0-(1-B)[B~C+CBo]+(2(1-8)+1)C} 

x’1:‘=(1/2){/1,AC,+(z-/i,)A} 

+(&/Ax){-8B;CC,,-(l-@C(C,+Z)} (69) 

&‘= (1/2){C$4/1, +A(Z-A,)) 
+ (e/Ax){ - BC;CB, - (1 - 0)( C, + Z)TC} 

x ~;‘=(&/dX){-K~ccO+(l-e)c} 

xi~‘=(1/2){BT,A/I,+IINAB,} 

+(&/dx)(+eB;CBN+(i-@[B;C+CBN]-(2(i-@+i)C} 

~‘l~‘=(1/2){/1,~C,+(z-/i,)~} 

+(&/dX)(+eB;ccN+(l-e)c(cN+z)} 
xi:‘= (1/2){c,~&+~(z-A,)} 

+ (&/dx)( +ec;cB;+ (1 -e)(z+ cN)‘c} 

x~~)=(E~dX)(+ec~ccN-(i-e)c). 

(70) 

The parameter 8 in (69) and (70) satisfies 

[(X+/Q/(X + 2j)12/4 < 6’6 1. (71) 

We now state the result by which it will be shown that B.C.1 leads to a well-posed 
problem. 

THEOREM 3. rf the matrices B,, Co, B,, and C, in (66) are such that the condi- 
tions 

xT($ ~~)xco (72) 

xT($ ;gx20 (73) 

are satisfied for all x # 0, then the problem is well posed and q satisfies the estimate 

llqjl;+Ea/; { lIq:“ll~+ (1/2)(11~+~‘*‘1l~+ llLd2’/l;)) dT< lb% (74) 
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We have used the notation qc2’ = (q2, q3, q4)T and a is a positive constant of order 
one. 

Proof: By Fourier transforming (66) and using (68) we obtain 

(Il4ll3,= +(1/2){~,*A/i,~,+~:n,A~,+~:A(z-n,)~,+~:(r-n,)A~,} 

+ (w4{~:c41- hwo> 

- u/w~+ 1 ~~N~N+~~~N~~N+l+~~~l~(z-~N)~N 

+4%V-~N)~4N-,l 

where 

- (E/AX){&+ 1 GN, I- d,mN> 

+& 5 Y:YY,Ax, (75) 
r=l 

Y*YY,= (4’3i (; ‘; y )( ;;;r). (76) 

The matrix Y is negative definite. It is easily verified also that the reduced matrix 
Y’,? 

, (77) 

is negative definite if 0 is within the bounds given by (71). Y, is used in the sum 
instead of Y for the points i = 1 and i = N. The remaining part of the matrix 

Y,=Y-Y,= 0 (l-O)C 0 

i 

0 0 0 
(78) 

0 0 (1-O)C 

is used to make the contribution from the boundary points more negative. Now we 
just have to make sure that the sum of the terms within the braces and the con- 
tribution from Yb have the right sign. By inserting the expression for the boundary 
points & and dN+ 1 into (75) we arrive at the equation: 

N-l 

(Ilqhll;),-~Y:Y~Y, AX--E c YrYY,Ax-&Y;Y,Y,Ax 
r=2 

(79) 
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By using Parseval’s theorem, conditions (72), (73), and (68) we obtain 

~Ilqll~~t+~~{llq~‘ll~+~~/~~~ll~+q’2’ll~+ll~-q’2’ll~~}~~. 

235 

(80) 

The energy estimate (74) is obtained by integration. Uniqueness follows directly 
from (74) and, since existence is no problem (we are considering a linear system of 
ordinary differential equations where existence is known), we have proved the 
theorem. 

Using the theorem above we will now investigate whether B.C.1 leads to a well- 
posed problem. We begin by studying the outflow terms. The matrices B, and C, 
are given by discretising the outflow conditions in (56) and using linear extrapola- 
tion of p, 

B,= 

C,= 

i 

(81) 

(82) 

The matrix X(~) can be separated into parts of different orders of magnitude, 

x (W- (NJ - XO(E/dX) + XL% + X’oh;LX,&,. (83) 

Simple but tedious algebra gives 

xTXdh;~,d,,X=P-l(E/dX)(l -@((A+ 2,E)(x,-x,)2 

+ P(x3 - +I2 + W/Prk - x8)‘>. (84) 

Obviously the quadratic form (84) is non-negative. We continue with the terms of 
order one, 

Xy$)X = U(26,xT +x; +x; +x: + (1 - 26,) x1x5} 

+ W&h - 1) x1(x2 - X6). (85) 



236 JANNORDSTRdM 

We will now make use of 6, to remove the mixed involving x5, this is accomplished 
by choosing 6, = 1. Having made that choice we obtain 

XX T ‘“‘x=P’~‘(&/dX)(l-e)((~+2~)(x,-x,)* 

+ dx3 - ~7)’ + (vWr)(x, -x8)‘) 

+ iqx; +x: +x: +x:> - (1/2)(2/J) x,(x,-X6) + O(L!tX/&). (86) 

By making use of the formula 

2XY = k/i + Y/J;;)* - vx* - Y2h (87) 

and letting Ax + 0 we can use the large positive coefficient in front of (x2 -x6)* to 
make the quadratic form (86) positive. Thus we have showed that the outflow terms 
have the right sign. 

By using the same technique, one can easily show that also the inflow terms have 
the right sign (the algebra is less complicated since only two boundary points are 
involved). The matrix C, is identically zero and we can choose 6, = 1. The matrix 
B, is found by discretising the inflow boundary conditions in (56) and is given 
below for reference : 

-1 (i-l)/JG 0 (i+ 1YJy-l 
0 

B,= 

i 

-i 0 -Jylo(i+ 1) 
0 0 -1 0 

0 JiF-m(i-1) cl i i 

(88) 

i = {(Y - 1 )(vWr) - Y(J + 242) >/I (Y - 1 NyWW + 14x+ 2d 1. 

We can summarise the result in a theorem. 

(89) 

THEOREM 4. rf the matrices B,, B,, and C, given by (88)), (81), and (82) 
respectively are used in the boundary conditions then problem (66) is well posed and 
the solution satisfies the estimate (74). 

We conclude this section with some remarks concerning B.C.4. If we apply 
Theorem 3 to B.C.4 we find that the condition (72) is satisfied (we have the same 
inflow conditions as for B.C.l) while the condition (73) is violated. By assuming the 
form (65) of I$ we get from (79) that (II&l:),=0 as one would expect from the 
previous analysis. 

8. TIME INTEGRATION 

Finally, we shall discuss some implications of the results obtained so far concerning 
the numerical time integration of the Navier-Stokes equations. Traditionally the 
influence of boundary conditions on choosing the time-integration method has been 
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ignored. A simplified analysis based on the assumption that the problem is periodic 
(or has an infinite domain) and thus allows one to Fourier-transform the spatial 
part has been used. The spectra obtained in this way is then the basis when the 
time-integration method is chosen. As will be shown below, this type of analysis 
might predict the wrong location or shape of the spectrum and one might therefore 
choose the wrong time-integration method. 

We need the well-known concept of absolute stability. 

DEFINITION 3. The region of absolute stability of a numerical method for an 
initial value problem is that set of complex values of s AZ for which all approxima- 
tions U” = u(n At) applied to the test problem 

u, = su, u(0) = 1 (90) 

will remain bounded as n + co. 

We will proceed as follows: first we choose a suitable time-integration method 
where the spectrum for periodic boundary conditions (hereafter denoted by B.C.P.) 
is included in the region of absolute stability. Next we investigate if that time- 
integration method applied to the problem with B.C.1 or B.C.3 leads to a stable 
computation. One case with high spatial resolution (Re = 10, Tchebycheff mesh) 
and one with low spatial resolution (Re = 100, uniform mesh) will be considered. 

In Figs. 11 and 12 we see the spectrum for B.C.P. in the high resolution case. 
Since the spectrum stretches far out along the negative real axis we need a method 

100 
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-60000 -40000 -20000 0 

Reb) 

FIG. 11. The spectrum for B.C.P., global view, Re = 10, Tcheb. mesh. 
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FIG. 12. The spectrum for B.C.P., view of origin, Re = 10, Tcheb. mesh. 

with a large region of absolute stability in the left half of the complex plane. This 
suggests some type of implicit method. As an example we might choose the 
trapezoidal method which applied to (90) gives us 

u”= [(l +sdt/2)/(1 -sdt/2)]“. (91) 

The trapezoidal method is absolutely stable for all dt if s(s) < 0. The spectra given 
by B.C.1 and B.C.3 are shown in Figs. 13-16. Since the whole spectrum for B.C.1 
is located in the region of absolute stability, u” will be bounded for all n. The 
spectrum for B.C.3 has eigenvalues far out in the right half of the complex plane 
(outside the region of absolute stability) and un will become unbounded as n + co. 

In the low resolution case we have the spectrum for B.C.P. in Fig. 17. The shape 
and location of the spectrum suggests that an explicit method might be suitable. As 
an example we might choose the classical fourth-order Runge-Kutta method which 
applied to (90) give us the solution 

un = [ 1 + (s dt) + (s 41)2/2! + (s dt)3/3! + (s Llt)4/4!]“. (92) 

By using formula (61), where IsI,,, N 125 is found in Fig. 17, we obtain a suitable 
time-step AtB,,-,, = 0.021 N CFL~R~/~~lmax leading to a stable method for B.C.P. The 
solid lines in Figs. 17-19 show the expanded (multiplied with At&.,) region of 
absolute stability for the fourth-order Runge-Kutta method. Since the whole 
spectrum for B.C.3 (shown in Fig. 19) is located inside the expanded region of 
absolute stability, un will be bounded for all n. The spectrum for B.C.1 (shown in 
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FIG. 13. The spectrum for B.C.1, global view, Re = 10, Tcheb. mesh. 
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FIG. 15. The spectrum for B.C.3, global view, Re = 10, Tcheb. mesh. 
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FIG. 16. The spectrum for B.C.3, view of origin, Re = 10, Tcheb. mesh. 
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FIG. 17. The spectrum for B.C.P., Re = 100, uniform mesh. 
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FIG. 18. The spectrum for B.C.1, Re = 100, uniform mesh. 
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FIG. 19. The spectrum for B.C.3, Re = 100, uniform mesh. 

Fig. 18) has a single eigenvalue at s N -240 which was not predicted by using 
B.C.P. That eigenvalue is located outside the expanded region of absolute stability 
and U” will become unbounded as n + co. 

9. CONCLUSIONS 

The question of open boundary conditions for the Navier-Stokes equations has 
been addressed. Using the energy-method conditions for well-posedness of both the 
continuous and semi-discrete constant coefficient problem has been derived. The 
conditions derived by the energy method have been used to derive well posed 
boundary conditions of a dissipative type for the continuous problem and to show 
that well-posedness is preserved for the semi-discrete problem if a correct numerical 
boundary condition is used. 

By using the Laplace transform technique a method to compute the influence of 
boundary conditions on the spectrum of both the continuous and semi-discrete 
problem has been derived. Using this method it has been shown how one can 
predict the rate of convergence to steady state. The method has been used to compare 
boundary conditions derived using the energy method and a couple of common 
boundary conditions used in the numerical calculations of the Navier-Stokes 
equations. The results indicate that the boundary conditions derived by the energy 
method are superior (give faster convergence to steady state) provided that the 
correct numerical boundary condition is used. It is also shown that the method of 
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using characteristic boundary conditions (with the numerical boundary conditions 
used here) is an unstable method if a sufficiently fine non-uniform mesh is used. The 
theoretical conclusions drawn by investigating the different spectra are confirmed 
by the l-dimensional Navier-Stokes computations. 

The problem with choosing the right numerical boundary condition has been 
addressed. The well-posed continuous boundary conditions are discretised and two 
different types of numerical boundary conditions are investigated. By extrapolating 
the normal velocity we obtained a scheme with zero convergence rate for the time- 
dependent problem and non-unique solutions of the stationary problem. On the 
other hand, by extrapolating the density we are able to prove that the semi-discrete 
problem is well posed. 

Finally some comparisons with spectra obtained assuming periodic boundary 
conditions and spectra including the effect of boundary conditions were made. It 
was shown that the assumption of periodic boundary conditions might give the 
wrong spectrum and as a consequence one might choose the wrong time-integration 
method. 
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